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Abstract—In this work we perform a queueing analysis of an
OFDMA-based and channel-aware resource allocation scheme.
We estimate the service characteristics of the queues using
extreme value theory and estimate the tail probability of queue
size distribution using generating function approach. Based on
numerical evaluations it is seen that our estimates are very close
to the values obtained by simulations.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) is a

multicarrier transmission technique that is used in current
broadband wireless technologies. It is based on a large number
of orthogonal subcarriers, each working at a different fre-
quency. OFDM is originally proposed to combat inter symbol
interference and multipath fading . However it also has a
potential of a multiple access scheme, OFDMA, where the
subcarriers are shared among the competing users. Subcarriers
are grouped into subchannels in an OFDMA system to sim-
plify the resource allocation process. Subcarriers in an OFDM
system experience frequency selective correlated fading. Us-
ing adjacent grouping methods (e.g. band-AMC in WiMax)
adjacent subcarriers are grouped into a subchannel. Then, it is
reasonable to assume that each subchannel experiences flat
fading, while different subchannels experience independent
and identically distributed (i.i.d.) fading with respect to each
user [1]. This property in fact can be exploited to maximize
the capacity by allocating each subchannel to the user with
best channel gain on that subchannel.
Although this way of resource allocation doesn’t guarantee

any QoS requirements (e.g. delay or short term received
rate), it can still be preferred because of its simplicity. In
this work we will perform a queueing analysis of such an
OFDMA based system. A fixed power level is used at each
subchannel and each subchannel is allocated to the user that
maximizes the signal to noise ratio (SNR). Such a system
was previously analyzed in [2], where the author studied the
asymptotic throughput analysis using extreme value theory [3].
Moreover, for users with different distances to the BS (hence
different average SINRs) the author considered allocation
of the subchannel to the best normalized SINR. Extreme
order statistics can be used to approximate the distribution of
maximizing random variable in a large set of random variables.
Using this method the author in [2] carried out a throughput
analysis of the system and proved that asymptotic analysis is

quite accurate. In [2] an analysis of delay was also attempted,
however apparently it is not realistic. The author models the
system as a continuous time M/G/1 system, where each user is
of equal distance to the base station. The system is inherently
discrete-time, since the channel condition changes and new
allocations are made at every time slot. Besides, OFDM is
used in wireless metropolitan are networks such as WiMax
and LTE, where user distances have a huge variations. In this
paper, modeling it as a discrete time multiserver queueing
system [4] and using generating function approach we estimate
the tail probability of buffer occupancy at a node for channel
aware scheduling in OFDMA based systems. Probability of
exceeding a certain buffer occupancy threshold is determined
as the QoS metric.
The rest of the paper is organized as follows. In Section II

we describe our system model. In this section we also describe
the extreme value methodology. In Section III we make an
analysis for the tail probability of queue size. In Section IV, we
evaluate accuracy of tail probability analysis by simulations.
We also look at the trade-off between transmission power
and supported traffic rate. In Section V we look at the case
of heterogeneous average SNRs. If the nodes have different
average SNRs (due to differences in distance or log-normal
fading) we can revise the scheme to schedule user with best
normalized SNR. We numerically compare tail probability
estimates with simulations results. This scheme is especially
suitable for uplink transmission, since the user can adjust its
traffic rate depending on the tail probability estimates.

II. SYSTEM MODEL

We consider a system, where N users share a total band-
width of W Hz, which is divided into K subchannels of
bandwidth Wsub. A fixed power P per subchannel is used by
all nodes. We assume that each subchannel is subject to i.i.d.
fading which is constant at each slot of duration Ts and varies
from slot to slot. Since fading level is fixed at each slot, we
make an AWGN channel assumption and use the tight SNR-
BER relations derived in [5]. Let γi,k be the instantaneous SNR
of user i at subchannel k. For a target BER the transmission
rate in a subchannel as a function of SNR is,

ri,k =Wsub log2(1+ βγi,k) (1)
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where β =−1.5/ ln(5×BER). This formulation was proposed
for M-QAM modulation however, it also effectively models
continuous rate adaptation [6]. The scheduling mechanism
is as follows, each subchannel is allocated to the user with
maximum SNR on that subchannel. We assume that each user
has identical average SNR and identical fading distribution.
We will start from a simple case, the channel condition of

each user at each subchannel is i.i.d Rayleigh distributed with
mean γ0 for all i and k, that is Fγ(γi,k) = 1− e−

γik
γ0 .

A. Extreme Value Theory
In order to analyze such a system we need to derive

the probability distribution of the maximizing SNR at each
subchannel. We can use extreme value theory in finding the
asymptotic distributions of extreme values in a set of i.i.d.
variables.
Let’s define Γk = maxi∈N γi,k as the maximizing SNR in

subchannel k, where N is the set of users. For large N ,
we can approximate the distribution of Γk as an extreme
value distribution, if some conditions are satisfied [3]. Let
γ1,k,γ2,k, . . . ,γN,k be independent and identically distributed
random variables with distribution function Fγ(x). If there
exists constants aN ∈ R,bN > 0, and some nondegenerate dis-
tribution function H such that the distribution of (Γk−aN)/bN
converges to H, then H belongs to one of the three stan-
dard extreme value distributions:Frechet, Weibull and Gumbel
distributions. Since channel conditions are i.i.d. and average
SNR’s are same for all users we can drop the subchannel
subscript. The distribution function of γi,k, F(x), determines
the exact limiting distribution. If a distribution function F(x)
results in one limiting distribution, then F(x) belongs to the
domain of attraction of this function.
Lemma 1: [3],[2] Let γ1,k,γ2,k, . . . ,γN,k be i.i.d. random

variables with distribution function F(x). Define ω(F) =
sup{x : F(x) < 1}. Assume that there is a real number x1 such
that, for all x1 < x< ω(F), f (x) = F ′(x) and F ′′(x) exist and
f (x) �= 0. If

lim
x→ω(F)

d
dx

(
1−F(x)
f (x)

)
= 0

then there exists constants aN and bN > 0 such that (Γ−
aN)/bN uniformly converges in distribution to a normalized
Gumbel random variable as N → ∞. The normalization con-
stants are

aN = F−1
(
1− 1

N

)
(2)

bN = F−1
(
1− 1

Ne

)
−F−1

(
1− 1

N

)
(3)

where F−1 = inf{y : F(y)≥ x}
Rayleigh distributed random i.i.d random variables ( fγ(γ) =

1
γ0
e−

γ
γ0 and Fγ(γ) = 1− e−

γ
γ0 ) satisfy the above Lemma.

For γi,k Rayleigh distributed with mean γ0 , the parameters
are: aN = γ0 lnN and bN = γ0. Therefore the random variable
Γ−γ0 lnN

γ0
can be approximated as a normalized Gumbel random

variable. A normalized Gumbel distributed random variable, Γ

with distribution function e−e−Γ
,−∞ < z < ∞ has expectation

E(Γ) = E0 = 0.5772.. and variance Var(Γ) = π2
6 .

Let’s redefine r(γi,k) = WsubTs
L log2(1+ βγi,k) as the number

of packets (of length L bits) that can be transmitted by user i
in subchannel k. Let’s define the rate of the SNR-maximizing
user in subchannel k as Rkmax,N = maxi∈N (r(γi,k)). Since the
SNR’s are i.i.d, the distribution of Rkmax,N is invariant of
subchannels, therefore we can drop the subchannel index k.
In [2], it was proven that if the SNR distribution satisfies
Lemma 1, then rate of the maximum-SNR user also converges
to Gumbel distribution. More specifically Rmax,N−aN

bN
converges

to normalized Gumbel distribution, where,

aN =
WsubTs
L

log2(1+ βγ0 lnN) (4)

bN =
WsubTs
L

log2

(
1+ βγ0(1+ lnN)

1+ βγ0 lnN

)
(5)

Mean and standard deviation of rate of maximum-SNR user
in any subchannel is the following,

E{Rmax,N} = bNE0+aN (6)

Std{Rmax,N} = bN
π√
6

(7)
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Fig. 1. Mean and standard deviation

Looking at (5), we see that as N→∞, aN→∞ and bN→ 0,
and RN converges to its mean value, Rmax,N ≈ bNE0+aN .

E[Rmax,N ] =

WsubTs
L

(
log2

(
1+ βγ0(1+ lnN)

1+ βγ0 lnN

)
E0+ log2(1+ βγ0 lnN)

)
(8)

Figure 1 shows the mean and standard deviation of
Rmax,N . These results numerically verify that standard
deviation decreases and mean increases as N → ∞.
Standard deviation is smaller than 1 packet even for
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moderate number of users, therefore we can assume that
a user can transmit 	bNE0 + aN
 − 1, 	bNE0 + aN
 or
�bNE0 + aN� packets in a subchannel, if allocated. Lets
define R(z) = P(Rmax,N < 	bNE0+aN
)z	bNE0+aN
−1 +
P(	bNE0+aN
< Rmax,N < �bNE0+aN�) z	bNE0+aN
 +
P(Rmax,N > �bNE0+aN�) z�bNE0+aN� as the p.g.f. of number of
packets transmitted in a subchannel, if allocated. Each user has
equal chance of allocating a subchannel, therefore probability
of allocation of channel k by a user is 1

N for all users and
subchannels. Therefore number of allocated subchannels is
Binomial distributed. Let σ(s) be the probability of total
number of packets that can be transmitted in a time slot being
equal to s. Let Σ(z) be the probability generating function of
σ(z).

Σ(z) =
K

∑
k=0
C(K,k)

(
1
N

)k(
1− 1

N

)K−k
(R(z))k (9)

III. QUEUEING ANALYSIS

Since the channel conditions for each user and at every
subchannel is i.i.d. and channel allocation is performed purely
based on normalized channel condition we can decouple the
queues of each user and avoid the problem of interacting
queues. In queueing theory this system can be modeled as
a multiserver system, where the number of active servers is
random according to probability vector σ and an active server
can transmit a packet in one time slot. We use the generating
function approach that was used in [4] for a different system.
Queueing model for our system can be summarized as follows.
1) Arrivals: A random number of L-bit packets arrive at each
time slot. The arrivals occur at the end of the time slot,
which means that the data unit that arrives in the current
slot can be transmitted in the future time slots. Let at
denote the number of data units arriving at time slot t.
Let A(z) = E[za] be the probability generating function
function (p.g.f.) of at , where E[.] denotes the expected
value. For poisson distributed arrivals A(z) = eλ(z−1),
where E[a] = λ packets. For geometric distribution it is
A(z) = 1

1+λ−λz .
2) Service: We assume that services start at the beginning
of a time slot and end before the new arrivals come.
Let’s define c = K×�Rmax,N� as the number of servers
and let st be the number of packets served at time slot t.

st = s, w.p. σ(s),s = 0,1, . . . ,min(qt ,c) (10)

We define the conditional probability generating function
Si(z) (given that there are i packets in the buffer) as,

Si(z) = E[zst |min(qt ,c) = i], i= 0,1, . . . ,c (11)

=
i−1
∑
s=0

σ(s)zs+
c

∑
s=i

σ(s)zi (12)

Channel allocation is purely based on SNR values and
sometimes a user may be allocated more resources than
that is enough to empty out the queue. For the simplicity
of analysis, in this case we assume that dummy pack-

ets are transmitted on the excess subchannels. We also
assume that services are independent of arrivals.

3) Overflows: Let Dmax be the delay constraint in slots. We
convert this to a queue size constraint Qmax = λ×Dmax
packets using Little’s result. Normally, if an arriving
packet finds the system full, then it is considered dropped.
However, for the simplicity of analysis we are considering
an infinite capacity buffer and define the QoS metric as
the overflow probability, which is the tail probability of
buffer content distribution (Prob[qt > Qmax]).

The system equation of the buffer content with respect to
time can be written as follows,

qt+1 = qt − st +at (13)

Let Qt(z) denote the pgf of qt . Considering the indepen-
dence of arrival and service processes and using standard z-
transform techniques, we can convert the system equation into
the z-domain as follows,

Qt+1(z) = A(z)E[zqt−st ]

= A(z)

(
Qt(z)Sc(

1
z
)+

c−1
∑
i=0
q(i)zi

(
Si(
1
z
)−Sc(1z )

))
, (14)

where q(i) denotes the probability that there are i packets in the
queue. We are interested in stable systems, where the buffer
content distribution reaches a steady state. When the steady
state is reached, Qt(z) and Qt+1(z) converge to a steady state
p.g.f. Q(z). Solving the above equation for equilibrium, we
get the expression for Q(z).

Q(z) =
zcA(z)∑c−1i=0

(
Si( 1z )−Sc( 1z )

)
q(i)zi

zc− zcSc( 1z )A(z)
(15)

=
zcA(z)∑c−1i=0

(
∑cs=iσ(s)(z−i− z−s))q(i)zi

zc− zc∑cs=0σ(s)z−sA(z)
(16)

=
A(z)∑c−1i=0

(
∑cs=iσ(s)(zc− zc−s+i))q(i)

zc−∑cs=0σ(s)zc−sA(z)
(17)

where q(i) = Prob[qn = i], i = 0,1, . . . ,c− 1 are the buffer
occupancy probabilities.
In order to derive Q(z) completely, we need to find the

c unknown probabilities q(i) for i = 0,2, . . . ,c− 1 [4]. Here
we need the analyticity property of Q(z) inside the unit disk
(z : |z| < 1). A complex function is said to be analytic in a
region if it is defined and differentiable at every point in the
region. In order to have the analyticity property, poles of Q(z)
inside the unit disk must also be the zeros of Q(z). At this
point Rouche’s theorem [7] stated below can be utilized to
show the number of roots of the denominator inside the unit
disk.
Theorem 1: Rouche’s Theorem[7] says that: If f (z) and g(z)

are analytic functions of s inside and on a closed contour C,
and also if |g(z)| < | f (z)| on C, then f (z) and f (z) + g(z)
have the same number of zeroes inside C. Assuming geometric
distributed arrivals 1

1+λ−λz the denominator of Q(z), zc(1+λ−
λz)−∑cs=0σ(s)zc−s, has c roots inside and including (z : |z|<
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1).
Proof: Let’s define f (z) = zc(1+ λ), g(z) = −λzc+1−

∑cs=0σ(s)zc−s and D(z) = | f (z)| − |g(z)|. For the value |z| =
1+ ε:

D(z) = |zc(1+ λ)|− |λzc+1+
c

∑
s=0

σ(s)zc−s|

≥ |z|c(1+ λ)− (λ|z|c+1+
c

∑
s=0

σ(s)|z|c−s)

≥ (1+ ε)c(1+ λ)− (λ(1+ ε)c+1+
c

∑
s=0

σ(s)(1+ ε)c−s)

= ε(−λ +
c

∑
s=0

σ(s)s)+o(ε) > 0 (18)

where (18) follows from (1+ ε)c = 1+ cε+o(ε). We see that
under the condition ∑cs=0σ(s)s> λ (which is also the stability
condition) | f (z)| > |g(z)|. Since f (z) has c roots, then the
denominator has also c zeros. One of them is at z= 1, and the
others are inside the unit disk. Denominator polynomial has
order c+1, therefore there is a single zero outside unit disk.

Let’s denote these roots by z j, j= 1,2, . . . ,c−1. Because of
the analyticity of Q(z) for |z|< 1, the numerator must also be
zero at these points.
c−1
∑
i=0

(
c

∑
s=i

σ(s)(1− z−s+ij )

)
q(i) = 0, j = 1,2, . . . ,c−1 (19)

We obtain the cth equation from the equality Q(1) = 1.
c−1
∑
i=0

(
c

∑
s=i

σ(s)(s− i)
)
q(i) =

c

∑
s=0

σ(s)s−A′(1) (20)

From the stability assumption, the right hand side of (20)
has to be greater than zero. From these K equations, the
probabilities q(i), i= 0,1, . . . ,K−1 can be calculated1.
A. Tail Probabilities of the Queue Size
Let P(q > Qmax) denote the tail probability of the queue

size. Tail probability can be used to approximate the overflow
probability of a limited buffer. It has been previously found in
[8],[9],[4],[10] that for sufficiently large values of Qmax, the
tail distribution of queue size can be approximated as,

Prob[q> Qmax]≈−Rq z
−Qmax−1
q

zq−1 , (21)

where zq is the real positive pole of Q(z) with the smallest
modulus outside the unit disk, i.e. it is the dominant pole of
Q(z). Rq is the residue of Q(z) at z= zq. Assuming geometric
distributed arrivals the p.g.f of queue size Q(z) has only one
pole outside unit circle (therefore it is real), one pole at

1Since we consider a large number of users, allocation probability of a
subchannel to a user is very low. Probability of allocation of k subchannels to
a user diminishes very quickly as k increases. When solving equations (19),
(20) in MATLAB, errors occur because of the precision of the software. To
prevent this, we can crop the probability vector σ without losing accuracy.
This also speeds up the computation

z=1 and the rest inside the unit circle. It can be derived by
evaluating (z− zq)Q(z) at z= zq.

Rq = (z− zq)Q(z)
∣∣
z=zq

(22)

=
(z− zq)A(z)∑c−1i=0

(
∑cs=iσ(s)(zc− zc−s+i))q(i)

zc−∑cs=0σ(s)zc−sA(z)

∣∣∣∣∣
z=zq

(23)

=
A(z)∑c−1i=0

(
∑cs=iσ(s)(zc− zc−s+i))q(i)

1
z ∑cs=0σ(s)szc−sA(z)− zcA′(z)

A(z)

∣∣∣∣∣∣
z=zq

(24)

=
A(zq)∑c−1i=0

(
∑cs=iσ(s)(1− z−s+iq )

)
q(i)

1
zq ∑cs=0σ(s)sz−sq A(zq)− A′(zq)

A(zq)

(25)

Equation (24) is obtained by applying the L’Hospital rule
and then using the fact that denominator of Q(z) is zero at
z = zq. As the system load increases, zq approaches to 1,
the probability of exceeding a buffer occupancy threshold
increases. For geometric arrival process (i.e. A(z) = 1

1+λ−λz)
the residue is written as follows:

Rq =
∑c−1i=0

(
∑cs=iσ(s)(1− z−s+iq )

)
q(i)

1
zq ∑cs=0σ(s)sz−sq −λ

(26)

IV. NUMERICAL EVALUATIONS

We performed a numerical study to evaluate the accuracy of
tail probability estimates and see the energy-QoS trade-off by
varying the transmission power. We assume a system of K=30
subchannels, where each subchannel is of Wsub = 200KHz.
System is slotted with slot length Ts = 0.001sec. Pathloss in
(dB’s) is 31.5+ 35 ∗ log10(d), where d is the distance of the
node to the base station. We assume Rayleigh fading with
mean equal to one that is constant at each time slot and is
i.i.d. from slot to slot. In Figure 2, we considered 100 users
and two packets sizes L= 100 and 50 bits,
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Fig. 2. Tail probability vs. traffic rate
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Distances of users are d = 1000m for each user, therefore
their average SNRs are the same. Arrival process for each
user is geometric distributed with mean varying from 220Kbps
to 260Kbps. Delay constraint is 0.1msec, which is converted
to Qmax = λ× 0.1 bits for each arrival rate. Figure 2 shows
the analytical and simulation results for overflow probability
versus power per subchannel for this system. We observe that
analytical results are very close to the simulation results and
overflow probability is increasing and convex as a function of
arrival rate.

V. NORMALIZED SNR-BASED SCHEDULING

In reality average SNRs of users are different due to
differences in distances to the base stations and effects of shad-
owing. In this case scheduling the best user causes unfairness
in the network. However, when we schedule users based on
their normalized SNR, resource allocation becomes both fair
and analyzable. In this case, subchannel k is allocated to the
user argmaxi∈N

γi,k
γi0
. Since the SNR of a users is the product

of normalized SNR and a random variable that is i.i.d. for
each user and subchannel, previous results on extreme value
statistics and subsequent queueing analyses still holds. If user
i is allocated a subchannel, then expected number of packets
that it can transmit is Rimax,N , which is found by replacing γ0
by γi0, average SNR of the user that maximizes the normalized
SNR.
In this system each user has the same channel access

probability, however users with higher average SNR can
support sessions with higher rates. The ratio of session rates
of users i and j is, λi

λ j
=
Rimax,N
R jmax,N

. If we set the proportionality

λ10 : λ20 : . . . : λN0 = R1max,N : R2max,N : . . . : RNmax,N among different
user traffic rates, we can better utilize the resources.
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Fig. 3. Tail probability vs. rate for heterogeneous SNR case

In Figure 3 we considered a system of 50 users at 500m and
50 users at 1000m distances. For near users Rimax,N = 16.6871

and for far users Rimax,N = 9.7777 packets/slot. The ratio is 1.7
and we increase the rate, maintaining this ratio among rates
of two classes of users. We see that analytical results closely
follow the simulation results.

A. Implementation of the system
A realistic system has to support users with different

average SNRs and demanding services with different QoS
requirements. For example data services have very loose delay
requirements. Besides these sessions can use whatever rate
that is available to them. On the other hand video streaming
sessions have stricter delay requirements and they can be trans-
mitted in varying quality levels (e.g. 128,256,512,1024Kbps).
Since we can estimate maximum supportable rate through
Rimax,N for all users, a video user can choose one of the avail-
able levels based on this estimate and its QoS requirements.
On the other hand voice sessions (e.g. VoIP) have a single rate
level, therefore for these sessions overutilization may occur.
This problem can be relieved if a voice user doesn’t enter the
competition if it doesn’t have any packets in its buffer.

VI. CONCLUSIONS
In this work we studied queueing analysis of an OFDMA

based resource allocation scheme using extreme value theory
and generating function approach. We performed a queueing
analysis to estimate the tail probability of queue size distribu-
tion for this system. We tested the accuracy of the estimates by
simulations and observed that estimates are quite accurate. We
both considered systems where users have same average SNR
and different average SNRs. The analysis we performed can
be used to easily estimate the probability of quality of service
violation given the system parameters and to adjust the session
rate or transmission power to improve the utilization.
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